Smart Load Balancing
Distribute requests intelligently across proxy endpoints based on response times, success rates, and geographic proximity. This optimization can improve performance by 40-60%.
class SmartLoadBalancer:
def __init__(self, proxies):
self.proxies = proxies
self.performance_metrics = {}
def select_best_proxy(self, target_location=None):
scored_proxies = []
for proxy in self.proxies:
score = self.calculate_score(proxy, target_location)
scored_proxies.append((proxy, score))
return max(scored_proxies, key=lambda x: x[1])[0]
def calculate_score(self, proxy, target_location):
speed_score = self.get_speed_score(proxy)
success_score = self.get_success_rate(proxy)
geo_score = self.get_geo_proximity(proxy, target_location)
return (speed_score * 0.4 + success_score * 0.4 + geo_score * 0.2)
Adaptive Rotation Algorithms
Implement intelligent rotation based on usage patterns, failure rates, and target website behavior rather than simple time-based rotation.
class AdaptiveRotator:
def __init__(self, failure_threshold=0.15):
self.failure_threshold = failure_threshold
self.proxy_stats = {}
def should_rotate(self, current_proxy, requests_made):
failure_rate = self.get_failure_rate(current_proxy)
request_count = self.get_request_count(current_proxy)
if failure_rate > self.failure_threshold:
return True, "High failure rate detected"
if request_count > self.get_optimal_threshold(current_proxy):
return True, "Request threshold reached"
return False, "Continue with current proxy"
Performance Monitoring
Implement real-time monitoring of success rates, response times, and cost-per-request metrics to identify optimization opportunities.
class PerformanceMonitor:
def __init__(self):
self.metrics = {
'total_requests': 0,
'successful_requests': 0,
'total_cost': 0,
'response_times': []
}
def log_request(self, success, response_time, cost):
self.metrics['total_requests'] += 1
if success:
self.metrics['successful_requests'] += 1
self.metrics['total_cost'] += cost
self.metrics['response_times'].append(response_time)
if self.metrics['total_requests'] % 100 == 0:
self.analyze_performance()
def get_efficiency_score(self):
success_rate = self.metrics['successful_requests'] / self.metrics['total_requests']
cost_per_success = self.metrics['total_cost'] / self.metrics['successful_requests']
return success_rate / cost_per_success
Request Optimization
Optimize request patterns through batching, compression, and intelligent caching to reduce bandwidth usage and improve cost efficiency.
class RequestOptimizer:
def __init__(self, cache_size=1000):
self.cache = {}
self.cache_size = cache_size
self.batch_queue = []
def optimize_request(self, url, headers=None):
# Check cache first
cache_key = self.generate_cache_key(url, headers)
if cache_key in self.cache:
return self.cache[cache_key], 0 # No cost for cached
# Add to batch if possible
if self.can_batch(url):
self.batch_queue.append((url, headers))
if len(self.batch_queue) >= 10:
return self.process_batch()
return self.make_single_request(url, headers)
def process_batch(self):
# Process multiple requests together
results = self.batch_request(self.batch_queue)
self.batch_queue = []
return results
Wolf Proxies Optimization Advantage
Wolf Proxies provides built-in optimization features that automatically implement many of these techniques, eliminating the need for complex custom development while delivering superior performance at $0.80/GB.