Smart Load Balancing
Distribute requests intelligently across proxy endpoints based on response times, success rates, and geographic proximity. This optimization can improve performance by 40-60%.
class SmartLoadBalancer: def __init__(self, proxies): self.proxies = proxies self.performance_metrics = {} def select_best_proxy(self, target_location=None): scored_proxies = [] for proxy in self.proxies: score = self.calculate_score(proxy, target_location) scored_proxies.append((proxy, score)) return max(scored_proxies, key=lambda x: x[1])[0] def calculate_score(self, proxy, target_location): speed_score = self.get_speed_score(proxy) success_score = self.get_success_rate(proxy) geo_score = self.get_geo_proximity(proxy, target_location) return (speed_score * 0.4 + success_score * 0.4 + geo_score * 0.2)
Adaptive Rotation Algorithms
Implement intelligent rotation based on usage patterns, failure rates, and target website behavior rather than simple time-based rotation.
class AdaptiveRotator: def __init__(self, failure_threshold=0.15): self.failure_threshold = failure_threshold self.proxy_stats = {} def should_rotate(self, current_proxy, requests_made): failure_rate = self.get_failure_rate(current_proxy) request_count = self.get_request_count(current_proxy) if failure_rate > self.failure_threshold: return True, "High failure rate detected" if request_count > self.get_optimal_threshold(current_proxy): return True, "Request threshold reached" return False, "Continue with current proxy"
Performance Monitoring
Implement real-time monitoring of success rates, response times, and cost-per-request metrics to identify optimization opportunities.
class PerformanceMonitor: def __init__(self): self.metrics = { 'total_requests': 0, 'successful_requests': 0, 'total_cost': 0, 'response_times': [] } def log_request(self, success, response_time, cost): self.metrics['total_requests'] += 1 if success: self.metrics['successful_requests'] += 1 self.metrics['total_cost'] += cost self.metrics['response_times'].append(response_time) if self.metrics['total_requests'] % 100 == 0: self.analyze_performance() def get_efficiency_score(self): success_rate = self.metrics['successful_requests'] / self.metrics['total_requests'] cost_per_success = self.metrics['total_cost'] / self.metrics['successful_requests'] return success_rate / cost_per_success
Request Optimization
Optimize request patterns through batching, compression, and intelligent caching to reduce bandwidth usage and improve cost efficiency.
class RequestOptimizer: def __init__(self, cache_size=1000): self.cache = {} self.cache_size = cache_size self.batch_queue = [] def optimize_request(self, url, headers=None): # Check cache first cache_key = self.generate_cache_key(url, headers) if cache_key in self.cache: return self.cache[cache_key], 0 # No cost for cached # Add to batch if possible if self.can_batch(url): self.batch_queue.append((url, headers)) if len(self.batch_queue) >= 10: return self.process_batch() return self.make_single_request(url, headers) def process_batch(self): # Process multiple requests together results = self.batch_request(self.batch_queue) self.batch_queue = [] return results
Wolf Proxies Optimization Advantage
Wolf Proxies provides built-in optimization features that automatically implement many of these techniques, eliminating the need for complex custom development while delivering superior performance at $0.80/GB.